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Abstract 

The evolution of a supernova core can be dramatically different if 
the neutrinos trapped in the core mix and/or Sip helicity and escape as 
“sterile, right-handed” neutrinos. Thus the observation of neutrinos 
from supernova SN1987A constrains the maas and mixing8 of neutri- 
non. Here we develop the general demription of neutrino mixing and 
spin Sip in a background of matter when the nonforward scattering 
rate is important. The corutraints are estimated. 
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1 Introduction 

Many astrophysical and cosmological quantities are very sensitive to small 
neutrino masses. Two well known examples of this are the solar neutrino 
flux and the ratio of neutrino to baryon mass densities in the universe. In 
addition, the dynamics of stellar collapse is also sensitive to neutrino proper- 
ties [l, 2, 3, 41. The aim of this article is to develop the description of Dirac 
neutrinos in the core of a supernova. 

Current popular prejudice favors that, if neutrinos have a small mass, the 
mass is of the Majorana type. This is because small neutrino masses are 
natural in “see-saw” models and the simplest such model yields Majorana 
neutrinos. However with a slight increase in complexity [5] the “see-saw” 
mechanism can yield light Dirac neutrinos without fine tuning. Here we shall 
usually (but not always) assume Dirac neutrinos with sterile right-handed 
components. 

In the Sun, the neutrinos propagate through a background of matter as 
they freely stream out from the core. Forward scattering off of this mat- 
ter background can produce a large change in the neutrlno’s flavor. This is 
known as the Mikheyev-Smirnov-Wolfenstein (MSW) [6, 71 effect and it has 
been extensively discussed in the literature (for a review see [S]). However 
these discussions have always assumed that the neutrino’s spin is a conserved 
quantity and can be neglected. Then the description for Majorana and Dirac 
neutrinos is identical. However when nonforward scattering occurs the helic- 
ity may change and then the descriptions of the two types are different. Here 
we take standard model neutrinos with small Dirac masses and develop the 
relativistic quantum theory including simultaneously the matter background 
and the spin dependence. 

Nonforward scattering of neutrinos occurs during the early universe and 
during stellar collapse. In particular, the dynamics of the hot neutron star 
produced by stellar collapse have yielded useful limits on the mass of Dirac 
neutrinos. Massless, standard model neutrinos are trapped in a hot neutron 
star, however a massive Dirac neutrino can escape by flipping its spin during 
scattering to become a sterile, “right-handed” neutrino. Recent, detailed 
calculations have yielded a limit on the mass of a Dirac muon- or tau- neutrino 
(i.e. no mixing) of approximately [2, 1, 91 

m < 28keV (1) 
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If mixing of the massive neutrino with the electron-neutrino occurs, the 
bound on the mass becomes more severe [9]. This is because in the hot 
neutron star the electron-neutrino density is far greater than the muon- or 
tau- neutrino density hence mixing increases the emission rate. In this article, 
the changes in the bound, Eq. (I), fr om neutrino mixing are estimated. 

This limit has come under intense scrutiny of late since several nuclear 
decay experiments [lo] indicate that there may be a neutrino with mass of 17 
keV and 1% mixing with the electron-neutrino. Cosmology constrains such a 
neutrino to decay much faster than the age of the universe. More importantly, 
double-beta decay experiments limit the component of the electron-neutrino’s 
Majorana type mass to be less than a few eV’s (see e.g. [ll]), and so the 
simplest interpretation of the nuclear decay results is that the 17 keV neutrino 
is of the Dirac type. Thus there is a conflict between these experiments and 
the supernova limit [12]. 

At the core of a hot neutron star, the background matter induces an 
effective electron-neutrino mass squared difference of 

P 
A. = (4”. k=Vz(&)~60&,, I( 5 x 10~~gm,cm~ 1 (2) 

(N.B. the neutrino density is not included above, see appendix). This is 
comparable to the mass limit found from spin flip, Eq. (l), and thus it 
is to be expected (from experience with the solar neutrino flux) that the 
background matter will have a large effect on the neutrino mixing. In order 
to accurately calculate the rate for spin flip under these conditions we derive 
in section 2 the fields for two mixed, Dirac neutrinos in a matter background. 

In section 3 our expressions for the neutrino fields are applied to calculate 
scattering reactions relevant for neutrino spin flip in a hot neutron star. The 
rate for spin-flip in neutrino-nucleus scattering is calculated for an arbitrary 
initial neutrino distribution. In addition, the rates for neutrino-electron and 
neutrino-neutrino scattering are calculated and a new contribution is iden- 
tified. These results arc then applied to calculate the generalization of the 
bound given in Eq. (1) to nonzero mixing angles. 

In a hot neutron star, and at times in the early universe, neutrinos make 
up a signigicant fraction of the total number density. Under such conditions, 
neutrinos forward scatter off of other neutrinos and the flavor evolution is 
in principle nonlinear. This topic has been discussed many times in the 
literature, however previous authors mistakenly neglected important terms 
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in the induced mass. In an appendix we give these terms and discuss there 
interpretation. 

2 The Fields for Dirac Neutrinos in a Back- 
ground of Matter. 

This section addresses the basic issues of the form of the neutrino field in 
a matter background. In 2.1 general kinematic issues are examined by cal- 
culating the field exactly for one neutrino flavor. In 2.2 the issue of spin 
versus flavor mixing is examined by studying the more realistic case of two 
relativistic neutrinos in a matter background. In 2.3 the physical situation 
of three neutrino flavors is discussed. 

2.1 One neutrino flavor. 

In the standard model of weak interactions, neutrinos interact with other 
particles through exchange of W and Z bosons. This interaction is coherent 
for neutrinos forward scattering off of r~ background of normal matter. As- 
suming this background matter is unpolarized, and working in its rest frame, 
the fermion field bilinear of the background matter in the weak interactions 
can be replaced by the number density. Then the weak interaction terms 
in the Lagrangian act like a potential for the evolution of a neutrino. For a 
Dirsc neutrino in an unpolarized, constant density matter background the 
equations of motion are: 

(4-f” - V-Y”) “& - rnvn = 0 

iQfvn - 772”‘ = 0 (3) 

where v~ and VR are the left-handed and right-handed chiral components of 
the Dirac neutrino field and m is the vacuum mass. V is the potential term 
and acts only on the left-handed field because of the chiral nature of the 
weak interactions. For a background of only electrons, and including only 
the charged current interaction, V = &!GFN. with N. the number density 
of electrons and the weak interaction constant GF = 1.16637 x 10-5GeV-a. 
For a discussion of all the different contributions to the potential, see e.g. 
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ref. [a] (and also the appendix). Here we examine the exact solutions of Eq. 

(3). 
Motivated by the chiral potential, we choose to work in the chiral repre- 

sentation of the gamma matrices [13] where 

+=pl ;1],7=[-: ;I,?=[; :l]. (4) 

In this representation the neutrino field can be written as 

where G and x are two component fields. Because the medium is assumed to 
be uniform and unpolarized, linear and angular momentum will be conserved 
quantities. Thus to derive expressions for Q and x we expand them in terms 
of the h&city eigenstates for the positive and negative energy states [14, 
151. The helicity operator is Q * k where Q is the spin and k the three 
momentum. In vacuum the helicity eigenstates are degenerate however this 
is not the case in a matter background since the weak interactions are chiral. 
The + and - helidty eigenstates for the particle and antiparticle must be 
each considered explicitly. The equations of motion yield relations among 
the coefficients of these states. The overall normalization of the coefficients 
is determined by constructing a bilinear of the fermion fields, for example the 
Hamiltonian, and requiring it to have the canonical form. This procedure 
completely determines the expression for the fermion fields up to some overall 
phases. 

The expressions for + and x are found to be, in the usual particle- 
antiparticle formalism [16] 

* = 2: ~-$$&-+a+.(k)e(-‘K+.*) - /.$$&&?(k)e”R+~“’ 

+ dm--.p(k),(-iK-.=) - (E- r k, 
ml + (E- - k)’ 

&+)&--~) 

a+a(k)e(-iK+.‘) + m 

m” + (E+ + k)? 
&(k)&R+-) 
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+ \l;+q9(k)=(-‘K-“) - ~~d!“W(-) (6) 

where a* (a!) and di (d:) are the usual annihilation (creation) operators 
for the 3~ helicity of the neutrino and antineutrino, respectively. cr(k) and 
,0(k) are two component helicity eigenstate spinors defined such that 

cr. h(k) = ka(k) at( = 1 

CT. kp(k) = -k@(k) d(k)P(k) = 1 (7) 

or, explicitly for k = k(sin 9 cos 4, sin 9 sin 4, cos 8) (caution: do not confuse 
these spatial rotations with later neutrino mixing angles) 

cos(e12) 
a(k) = sin(B/2)e’+ 1 P(k) = 1 _ ‘$$;;;,ia j (8) 

Note that for neutrinos, S = fl /2 and a(k) and P(k) are the + and _ 
h&city eigenstates, respectively, however for antineutrinos the spin operator 
is S = -C /2 so that then u(k) and P(k) are the - and + helicity eigenstates, 
respectively. The neutrino and antineutrino four momentum of the 3~ helicity 
are defined to be K+ = (E*, k) and I?* = (&, k), respectively. The energy- 
momentum relations are found to be 

E, = V/2 + J(k - V/2)2 + mz 

E- = V/2 + t/(k + V/2)1 + ,a 

E+ = -V/2 + J(k - V/2)0 + rnz 

.I?‘_ = -V/2 + ,/(k + V/2)2 + rnz (9) 

where E+(&) denote the energy of the & helicity neutrino (antineutrino) 
and k is the magnitude of the three momentum. 

Eq. (6) agrees with expectations for the relativistic limit. Then the 
left-handed chiral field, G, is dominated by the negative helicity neutrino 
and the positive helicity antineutrino (and the reverse holds for the right- 
handed chiral field, x ). In fact, using Eqs. (9) in calculating the relativistic 
limit, it turns out that Eq. (6) becomes independent of the potential, V, 
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to leading order! In part, this is because it is the vacuum mass term which 
connects the different degrees of freedom together through Eq. (3). This 
observation has an important physical implication-the potential is irrelevant 
for the kinematics of relativistic neutrinos. In particular, in the dense matter 
of supernova core, the neutrino spin flip cross section is independent of the 
potential, V, to leading order in the relativistic limit [16] . 

It is amusing to note that some unusual behavior occurs for nonrelativistic 
neutrinos [17]. Eqs. (9) show that the minimum energy corresponds to a 
nonzero value for the momentum. This can be easily understood qualitatively 
since a small momentum allows definition of the helicity and hence then the 
energy can be lowered considerably by the potential, V. One implication of 
this is that velocity and momentum are no longer strictly proportional to 
each other. The flux density of a negative helicity neutrino, v = D-y v- , 
can be calculated using Eqs. (6) to yield 

I”1 = (k + VP) 

m2 + (k + V/2)2 

Thus for a neutrino in a medium with V > 0, if the momentum is small 
compared to V/2 the neutrino will move in the direction opposite to its spin 
with a velocity independent of the momentum. Similarly, for a neutrino to 
be at rest in a medium it must have a nonzero momentum. 

2.2 Two neutrino flavors, relativistic approximation. 

In the previous section it was demonstrated that a matter background has 
only small effects on the kinematics of a relativistic neutrino. However it is 
well know that a matter background has a large influence on the mixing (see 
e.g. [S] ). Briefly summarizing the previous findings on mixing, a relativistic, 
negative helicity electron-neutrino has a large “induced mass squared”, A, 
given in Eq. (2). However the electron-neutrino is a flavor eigenstate and 
this is generally different than a mass eigenstate when the neutrino’s have 
vacuum masses. The mixing between the flavor and mass eigenstates is 
sensitive to the induced mass term. When the induced mass is comparable 
to the difference between the vacuum masses squared, a resonance occurs. At 
the resonance the mixing is maximal, while for much larger A the mixing is 
suppressed. Previously, these results have always been derived by assuming 
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that the neutrinos spin is fixed and using an effective Klein-Gordon equation 
of motion [6, 4, 18, 141 . Here we shall keep the spin dependence and study 
mixing using the Dirac equations of motion. 

To simplify the discussion of two Dirac neutrinos in a background of mat- 
ter, we shall assume that only one neutrino is massive. By neglecting the 
mass of the lighter neutrino it is then described by only a single Weyl field 
since the right-handed component of this neutrino decouples. This approx- 
imation is probably realistic since known fermion masses exhibit a strong 
hierarchy. Then the equations of motion, in the chiral representation of the 
vacuum mass basis, are 

(i& - ia V - V,)*I, - Vcos B[cos Ml, + sin B&.] = 0 

(i& - i.7 . V - Vn)@zv - mx - V sin B[cos &, + sin O@.l.] = 0 

(20 + io .0)x - miP1, = 0 (11) 

where @I. and&, are the left-handed two component neutrino spinors and 
x is the right handed two component neutrino spinor (see Eq. (5) and also 
Ref. [14]). m is the vacuum mass term which connects the Q1, and x degrees 
of freedom to form the massive Dirac neutrino. ‘PI, has no vacuum mass but 
is mixed with Qsv by the weak interaction with the background matter. The 
potentials V, and V are the neutral current and electron-neutrino charged 
current potentials, respectively. 0 is the vacuum mixing angle 

01” 1 II = cost9 -sin@ @. 
Q2” sin 8 cos e II 1 *P, 

(12) 

between the mass eigenstates and the flavor eigenstates, where tb,e latter are 
denoted by subscripts e and p. These equations of motion are the ,two flavor 
generalization of Eq. (3). 

The procedure for calculating the fields is analogous to that described in 
section 2.1. Assuming the background matter density is constant (so that the 
potentials are constants), the solution to the equations of motion is written 
as a sum over plane waves. The physical mass eigenstates will be the helicity 
eigenstates. For one massive Dirac neutrino and one massless neutrino there 
are two - helicity and one + helidty particle degrees of freedom (in vacuum 
and in a matter background). The equations of motion yield relations among 
the coefficients of these degrees of freedom. The normalization of the coef- 
ficients is determined by constructing the Hamiltonian. To further simplify 
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the situation I assume that the neutrinos are relativistic. This is a very re- 
alistic assumption for applications to the supernova or the early universe. 
Then it turns out that the expression for the fields in the flavor basis is 

Q. = C{sin8~[a+a(k)e(-‘Kt”) - d!a(k)e( ‘R-‘z)] 
k 

+ [sin &,dj+e( iay+‘z) + cos &,,df+e( ‘R1+‘“$3(k) 

+ [sin 8,aZ-e(-iK’-‘“) - cos e,al_e’-‘K’-‘“‘]P(k)} 

a,, = c(cos 6’z[a+cr(k)e(-‘K+“) - d!cr(k)e( iR-‘=)] 
k 

+ [cos&dI+e( iRz+‘+) - sinB,df+e( iR1+‘“$3(k) 

+ [cos 6’,al-e(-ixS-“) + sinB,al-e(-‘K1-‘.)]p(k)) (13) 

The expression for the x field is not given since it is not relevant for neutrino 
scattering. Here the notation is the same as in the one flavor case but with 
the subscripts 1 and 2 denoting the lower and upper mass eigenstates in 
the matter background, respectively. 9, is the mixing angle in matter for 
neutrinos, which is well know from earlier studies of neutrino propagation 
through matter 

sin*(28,) = [(A _ 
(ma sin 20)* 

ma cos 219)~ + (mD sin 20)a] 

For A << ma vacuum parameters dominate and 8, % 9 . for A N mz “.3N”ln I 
a resonance occurs and 8, x n/4 ; and for A >> ma flavor effects dominate 
so e, zs 7r/2 and mixing is suppressed. The &,, is the mixing angle in matter 
for antineutrinos and is also given by Eq. (14), but with A = 2Vk -+ -A. For 
antineutrinos, 8,.,,, 2 #m > 0. 

The kinematics of the neutrino are independent of the matter background, 
to leading order in the relativistic limit, but the second order terms are 
important. While solving the equations of motion, the energy and momentum 
relations are determined 

E, = k+m=/2k+... 

i?- = k+m1/2k + . . . 

-&~,a = k + K + M;,,(A)/2k + . . . 

E+;I,z = k - V, + M;.,(-A)/2k + . . (15) 
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where we keep the next to leading order terms in an expansion of V, Jk, V/k 
or (m/k)l. The quantity A!,? is the mass eigenvalue in matter of the ith state 
and it has the same form found in previous analysis (see e.g. [a]) of matter 
dependent mixing 

M&(A) = (ma + A F (A - mz cos 28)a + (m3 sin 28)a )/2 (16) 

where A = 2Vk. The minus and plus signs correspond to the 1 and 2 states, 
respectively, so that M,’ > M: for positive and negative A. 

The next to leading order terms given in Eq. (15) are typically not im- 
portant when integrating over phase space in calculating neutrino scattering 
rates. However they are important in determining the proper mixing states 
for discussing scattering. The nonforward scattering length scale is the mean 
free path, L,,.,, = l/(qN), where in a supernova core, N is the nucleon num- 
ber density and c is the cross section, of order GSEZ. The length scale which 
determines when two mixed states are separable is the oscillation wavelength, 
L.,,, = 4rk/[M,1- M:]. However this length scale is always far shorter than 
the neutrino scattering length 

Lo,, -c-c< Ltt (17) 

This is because typically L,,. is less than or of order the forward scattering 
length scale 4nk/A and hence eq. (17) is equivalent to GFE’ << 1 which is 
well satisfied for E’s typical to supernova (N.B. in early universe applications 
IN. - NC;I << N. and this may not hold). Eq. (17) has an important 
implication. The relative phase between the mass eigenstates that is acquired 
during propagation between nonforward scattering6 is very very large. Hence 
with many neutrinos this large phase averages out and the mass eigenstates 
in matter can be taken to be incoherent when they scatter. Thus when 
discussing scattering in a uniform matter background the rates are calculated 
using the neutrino mass eigenstates as the physical initial and/or final states. 

For three neutrino flavors, the situation is only slightly different. The 
separation of the mass eigenstates which couple dominantly to v,, and V, can 
be much smaller than A, the electron-neutrino induced mass squared differ- 
ence. If there is no net muon density, then the relative forward scattering 
potential between these neutrinos is generated by radiative corrections and, 
as calculated by Botella, Lim and Marciano [19], is 

v, - v, = “z$(N, + Nn)log($ - (Np + ;Nn)] (18) 
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In evaluating Eq. (18) for the conditions found in a supernova core, we find 
that Eq. (17) still typically holds because m, is much larger than neutrino 
energies therein. If there is a net muon density, it will typically generate an 
even larger difference between these mass eigenstates in matter. Thus it is 
proper to take all three of the neutrino mass eigenstates in matter to be the 
incoherent, asymptotic, physical states when calculating scattering rates. 

The main result of this section is Eq. (13). These equations are easy to 
justify, a posteriori. For the negative helicity neutrinos, the mixing between 
the flavor basis and the mass eigenstates basis is the same function of the mat- 
ter background, Eq. (14), as found in previous analyses of the MSW effect. 
For the relativistic, positive helicity neutrinos, the matter background does 
not directly affect these particles so the mixing between the mass eigenstates 
and the flavor eigenstates remains the vacuum mixing. Thus, for example, 
the probability of an electron-neutrino interaction producing a positive he- 
licity neutrino is just (sin 0 m/Zk)‘, independent of the matter background. 

The derived neutrino fields in matter, Eqs. (13), can be directly applied to 
calculate scattering rates in matter. One interesting, general result emerges 
when they are applied to neutrino scattering via the weak neutral current. 
The form of this interaction is 

m z,[c &“%] a 
where G’ are two by two matrices and the sum above is over the ~uuor or 
vacuum mass eigenstates. However when expressed in the background matter 
mass eigenstate basis, the physical basis for neutrinos in uniform matter, the 
interaction does not generally have the form of Eq. (19). This is because 
the mixing between the flavor and mass eigenstates of the negative helicity 
neutrinos is momentum dependent. If the two neutrino fields in Eq. (19) 
have different momentum, then each must be rotated by a different amount 
to become mass eigenstates in matter. The two rotations will in general leave 
off diagonal neutral current terms. Using Eq. (13), the mixing amplitudes 
for scattering from one neutrino mass eigenstate into another via the neutral 
current off of some particle Q, v=-(k) + Q --t +(k’) + Q, is 

ut(kl)v(k) = 4W) - 64k’)l s46.G) - h@)l 
- sin[&,,(k) - O,(k’)] cos[b’,(k) - O,(k’)] (20) 
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This has been conjectured previously [20] and now with the derivation of the 
fields herein it is proved. 

2.3 Three neutrino flavors 

It is known that there are three flavors of light neutrinos. In the absence 
of direct experimental evidence, it will be assumed herein that there are a 
hierarchy of neutrino masses with small mixing angles, in analogy with that 
observed for the charged fermions. Assuming that only two neutrino flavors 
mix, as done in the previous section, is an approximation that may not 
always be accurate. The mixing of three negative helicity neutrino flavors in 
a background of normal matter has been discussed in the literature on solar 
neutrinos (for a list of references see [El). H owever in the core of a supernova, 
new effects not covered in previous discussions are relevant. 

For three flavors, the mixing between the flavor and mass eigenstates 
in matter of the negative helicity neutrinos is determined by the effective 
Klein-Gordon mass matrix. In its most general form, 

4 A. MS = CJ 4 ut + 4 (21) 4 -4 
The notation used here is that of references [21, 81. U is a 3x3 vacuum 
mixing matrix analogous to the Cabbibo-Kobayashi-Maskawa matrix, rni 
denotes the vacuum masses, and the A, = 2kV,‘s are mass squared terms 
induced by the matter background. A. = 2kfiGFN. is as given in eq. 
(2) and comes from charged current forward scattering of neutrinos off of 
electrons in the matter background. A, = 2k&GFN,, denotes the similar 
induced mass term from charged current forward scattering off of the muon 
excess in the matter background. A, denotes the contribution from radiative 
corrections given in Eq. (18). Diagonal contributions to the mass matrix, as 
from neutral current scattering, are irrelevant so only differences in the A,‘s 
are important. For the general case, Eq. (21) must be diagonalized to find 
the masses and mixings in a background of matter. 

In discussions of solar neutrinos, only A. is relevant in Eq. (21). In the 
Sun, A,, vanishes since their is no muon excess there. A, is present for solar 
neutrinos but negligible since it corresponds to a length scale far larger than 
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the Sun’s radius. However for neutrinos in dense matter, A,, and A, may 
be relevant. A, is smaller than A. by roughly 5 orders of magnitude but, 
as discussed in the two flavor section, the oscillation wavelength from this 
term is still small compared to the nonforward scattering length. A,, may 
become comparable to A. in a supernova core since typical lepton chemical 
potentials are larger than the muon mass (and a large muon excess can be 
produced through neutrino mixing). In general, all three of the contributions 
to the induced mass; the electron background, the muon background and 
the radiative mu-tau corrections, can be relevant for discussions of neutrino 
mixing in dense matter. 

A general discussion of three flavor effects for arbitrary neutrino masses 
is quite involved and beyond the scope of the present work. Herein we shall 
make the assumption that m: - rn: << A, - A, and so it is a good approx- 
imation to take rn: = mi = 0. Then the general 3x3 mixing matrix may be 
written as: 

c, 0 % 
u = -s+s, c, s,c, (22) 

-w% % C&+ 

where 4 and $ are two mixing angles, and S. and C. denote sin a and cos a, 
respectively. From Eq. (21), U is defined to rotate the mass eigenstates into 
the flavor eigenstates, IV= >= IJ,~]v; >, where a = e,p,r denote the flavor 
eigenstates and i = 1, 2, 3 denote the mass eigenstates. With rn: = rni = 
0, one linear combination of these states may be chosen orthogonal to the 
electron-neutrino, hence the zero element in Eq. (22). 

In matter with A,, << A., it is possible to obtain simple, approximate 
expression for &, and &,,. The problem is then formally equivalent to the 
case of two nonzero vacuum masses with only one induced mass, which has 
been solved in [21]. Using this previous solution it is easy to see that there 
are two possible two-flavor resonances, an “e-tau” resonance when m: L A, 
and a “mu-tau” resonance when m: x A,,. The expression for &,, is given 
by Eq. (14) with 9 --t 4,A ---t A. and A 
given by Eq. (14) with B --t 4, A 

+ m$ The expression for &,, is 
+ A, and A ---t m:C$. Thus when there is 

only one relevant neutrino vacuum mass, there are two mixing angles which 
are important, describing “e-tau” and “mu-tau” mixings, and in matter they 
depend on the background electron and muon densities, respectively. 
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3 Scattering in a Supernova Core. 

Here the results of Section 2, especially Eq. (13), are applied to neutrinos 
in the core of a supernova. The techniques necessary to develop a quantita- 
tive description of core dynamics with neutrino mixing are illustrated. The 
constraint on Dirac neutrino masses from spin flip is estimated for various 
neutrino masses and mixings. 

3.1 A supernova core without neutrino mixing. 

After stellar collapse, the core of supernova SN1987A is thought to have 
formed a young, hot neutron star. The properties of such objects are dis- 
cussed in the astrophysical literature (see e.g. [22, 231). Briefly, the den- 
sities therein are typical nuclear densities over most of the core, of order 
5 x 101’gm/cm3. However neutrinos are trapped in matter for densities 
down to 3 x 101’gm/cm3 because at lower densities the nucleons are still 
in large nuclei which have large elastic scattering cross sections. The initial 
core temperature is expected to be somewhere in the range from 10 to 40 
MeV. The nucleons are semi degenerate with their chemical potentials minus 
the rest mass comparable to the temperature. The ratio of leptons to nucle- 
ens, X, is initially about 0.35 and (for Dirac neutrinos) this only changes as 
neutrinos carry away lepton number by leaving the core. In the standard pic- 
ture, neutrino emission is a very slow process-the neutrinos diffuse out of the 
hot neutron star over several seconds. This is consistent with the observed 
neutrino pulse from SN1987A [24]. Thus the electron chemical potential is 

fi. = 290MeV[( ’ 
0.35)(5 x 101Pgm/cm3)11’3 

much larger than the temperature and so the electrons, and other leptons 
which are in “chemical” equilibrium with the electron, form degenerate Fermi- 
Dirac gases. 

When thereis no neutrino mixing, then only the electron and the electron- 
neutrino share the cores lepton number. If the number densities were equal, 
the chemical potentials of the two particles would be about 230 MeV. How- 
ever the electrons have electric charge and balance the protons’ charge while 
the neutral neutrinos can not do this. Thus whether complete transfer of 
lepton number is achieved or not depends on details of nuclear statistical 
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equilibrium (see e.g. [22]). In numerical simulations of the hot neutron star 
[23], the electron-neutrino chemical potential in the core is somewhat less 
than this value. 

In the calculations below it is assumed that the core has constant and 
uniform density and temperature. Such an approximation may be quite 
unrealistic-especially for considerations of neutrino mixing in matter. Diffu- 
sion (and convection) carries neutrinos through varying density and greatly 
enhances neutrino species mixing. However the estimates below using con- 
stant density should give conservative values for when neutrino species share 
the lepton number in a supernova core. It is intended that this discussion 
clarifies how to handle neutrino mixing in dense matter for subsequent nu- 
merical treatments of a supernova core. 

3.2 Distribution of lepton number for mixed neutri- 

In general, for Dirac neutrinos, the total lepton number is the only conserved 
quantity. Thus it is in principle (and often in practice) possible for the 
electron, all three neutrinos and the muon to share the lepton number in 
the core of a neutron star. If and how this comes about is determined by 
the reactions in the core which change one lepton into another. A particular 
lepton must be produced on a timescale faster than the neutrino diffusion 
time for it to share the cores lepton number. In this section, some of the 
relevant reactions are examined. 

When neutrinos mix, how we must describe the neutrinos changes. As 
discussed in Section 2, the physical basis for describing neutrino scattering 
in dense matter is the mass eigenstate basis. For vanishing vacuum mixing 
angles, the flavor eigenstates are equivalent to the mass eigenstates. However 
this equivalence is a little strange for massive neutrinos-a flavor eigenstate 
does not always correspond to the same mass eigenstate! At a resonance, 
the approximate identification between the mass eigenstates in matter and 
the interaction eigenstates flips. Hence the reaction rates of the mass eigen- 
states are strongly energy dependent-approaching step functions in energy at 
a resonance. They are also quite different between neutrinos and antineutri- 
nos. Because of this, it is no longer generally possible to make a distinction 
between chemical and thermal equilibrium when describing how mixed neutri- 
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nos approach equilibrium. Typically, a particular mass eigenstate in matter 
comes into equilibrium at many different rates, and the rates for different 
mass eigenstates are analogous. 

This means that it is incorrect to take different chemical potentials for 
different neutrino mass eigenstates and then watch how they evolve in time. 
The phase space distribution will generally be quite far from Fermi-Dirac, and 
in calculations where the relative lepton number of different neutrino species 
changes in time, the energy dependence of the neutrino number densities 
must be kept explicitly (at each matter density). Only after a long enough 
time, such that all of the neutrino phase space densities are identical, will the 
common distribution be Fermi-Dirac. There may be special limiting cases, 
when the neutrino resonance energy is much larger or much smaller than the 
chemical potential, where an approximate intermediate situation exists and 
a particular partial mass eigenstate can be described by a single chemical 
potential. However one must be careful since the resonance energy depends 
on the electron density and so this approximation may not hold over the 
whole supernova core. In general, the energy dependence of the neutrino 
number densities should be kept explicitly (at each matter density). 

3.2.1 e+p-+l&+n. 

The fastest initial reaction that creates new lepton flavors is typically [9, 221 
the neutronization process, e + p --t vi + n. This is a purely charged current 
reaction involving only the electron-neutrino field so the mixing factor for 
producing a neutrino is just IV.ilr where the subscript i denotes the ith mass 

eigenstate in matter. For free nucleons and unblocked neutrinos, the rate 
equation is 

dq 
- = 10s/sec Ei’ 
dEidt II,/,I"~il'(Ei) 

c 
The neutrino’s energy dependence is shown explicitly and p. is as given in 
Eq. (23). 

From the three flavor mixing matrix given in Eq. (22), we see that only 
the neutrino mass eigenstates 1 and 3 can be produced in this reaction. 
This is because we took the lightest two vacuum masses to vanish so one 
linear combination of these states can be chosen orthogonal to the electron- 
neutrino. For rni >> A., the &.,, reduces to the vacuum angle, 4. The 1st 
mass eigenstate neutrino is dominantly the electron-neutrino and is produced 
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quickly while the 3rd neutrinos will share the core’s lepton number for 

sin’4 > 2 x lo-“. (25) 

However since A. given by Eq. (2) ’ g 1s enerally larger than the mass given 
in Eq. (l), the more relevant limit for finding the lower bounds on Dirac 
masses from the spin liip process is A. >> m” . In this limit, the i=l mass 
eigenstate is the dominantly nonelectron-neutrino, and using that cosz & x 
((m: sin24)/(2A.))s from Eq. (14), the equilibrium condition is: 

4 (---- 40keV 
)‘sins 24 > 3 x 10-s. (26) 

The conditions assume a neutrino diffusion timescale of 1 second. These 
equations determine the vacuum mass and mixing angle parameters for which 
the electron and two neutrinos will be in equilibrium and share the core’s 
lepton number. These constraint are plotted in Fig. (1) as a dashed line. 

5.2.2 vi-+n+p+p 

The neutronization reaction transfers lepton number from the electrons to 
the 1 and 3 neutrino mass eigenstates. The reaction discussed here will 
subsequently transfer lepton number to the muon. The typical chemical 
potential, Eq. (23), is larger than the muon mass and when the electron and 
muon chemical potentials are equal the muon number density will be about 
l/2 the electron number density. 

For free nucleon* and unblocked muons, the rate equation is 

dlY 
2 = 5 x 10sjsec 

E&/W 

dE,dt 2.1/J; FJ,il’(Ev) (271 

where Yr is the muon fraction, m,, the muon mass and IV,,# the mixing 
matrix element between the muon neutrino flavor state and the ith neutrino 
mass eigenstate in matter, as given in Eq. (22). p,, represents the chemical 
potential of the initial neutrino and is taken to be the same as II, given in 
Eq. (23). We shall assume that the neutronization reactions have been fast 
enough, Eqs. (25-26), to bring the 1 and 3 neutrino mass eigenstates in 
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matter into equilibrium so that they have equal, large lepton numbers. Then 
vi- + n + p + p will increase the net lepton numbers of muons when 

sin’ $ > 2 x 10-i’ (28) 

for A,, << rni. When the muon density becomes large such that A,, >> rni 
then this mixing factor is suppressed. Assuming that the muon chemical 
potential becomes comparable to the electron chemical potential, ignoring 
muon blocking of the final state, but including the mixing matrix element 
suppression, the equilibrium condition becomes 

(---- 40keV 
)’ sin* 2+ > 1 x 10-s 

Initially there is no muon background so the rate is unsupressed and Eq. 
(28) is applicable. However as the muon number density becomes large and 
comparable to the electron number density the rate is eventually suppressed 
and then Eq. (29) is comparable to that for neutronization, Eq. (26). 

As the muon lepton number grows, the lepton number of the 2 neutrino 
mass eigenstate in matter grows with it. This state is dominantly muon- 
neutrino with no electron-neutrino component. Thus there is no small mix- 
ing angle suppression at all for converting muons into this neutrino via the 
neutronization reaction p + p -t vi- + R. 

The large electron number density suppresses the rate for producing 
nonelectron-neutrinos, Eq. (26). H owever once these neutrinos are produced, 
they can in turn produce muons without this suppression and the muons in 
turn quickly produce the missing neutrino state. Thus the first step is the 
bottleneck in the process of transferring lepton number from the electron to 
the other leptons. It will typically be the case that either only two leptons 
share the lepton number, the electron and the dominantly electron-neutrino, 
or all five leptons share the lepton number, the electron, the muon, and all 
three neutrinos. The situation is summarized in Fig. (2). 

3.2.3 Vi- + e -+ Vj- + c? 

Neutrino-electron scattering also contributes to bringing neutrinos into equi- 
librium. The nominal rate for this process is about two to three orders of 
magnitude smaller than the nominal neutrino-nucleon charged current reac- 
tion rate. In part, this is because only a small amount of phase space is 
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available to the final state electron. However the neutronization rate may 
eventually be blocked by the scarcity of free protons and by the neutron shell 
blocking of electron capture on heavy mass nuclei [22]. Thus this reaction 
must be included in a detailed treatment of how neutrinos are brought into 
equilibrium. 

The mixing matrix elements, and the neutrino energy dependence, of this 
reaction are different from those used in the neutronization process. Both of 
these effects may make neutrino-electron scattering important for neutrino 
equilibrization. When calculating the rates it is vital to notice that because 
the neutrino energy changes substantially in this reaction, the neutral current 
amplitude can change the neutrino’s species (see Section 2, Eq. (20)) in 
addition to the species changing from the charged current. To illustrate the 
nondiagonal neutral current, we assume only two neutrino flavors and find 
the matrix element for vr- + e --t vr- + e scattering to be proportional to 

[{sinb’,(k)cos&,,(k’) + (-i + z)sin[B,,,(k) - O,(k’)]}‘(rc’~$’ 

+r” sin’[B,(k) - &,,(k’)](~. i’)‘] (30) 

where z s sins&,b = 0.22, z and rc” are the initial and final neutrino 
momentum and g and @+’ are the initial and final electron momentum. For 
A. = 2V.k >> m’,&,,(k) cz 7r/2 -((ma sin 20)/(2A.)) and assuming both A. 
and A: >> mr, then this matrix element can be approximated as 

(mr2.;2e)r 
[{l + (-i + a!)(1 - $}Q. 9”)’ + 2(1 - p(L. q’y] (31) 

The terms which vanish when k=k’ come from the neutral current and the 
remaining term comes from the charged current. In general both currents 
contribute to bringing neutrinos into full equilibrium. 

The species changing nature of the neutral current scattering is only rel- 
evant when the flavor of the final neutrino is to be measured after the scat- 
tering. If one sums the cross section over all possible final state neutrino 
species, the cross section becomes independent of the final neutrino basis. 

3.2.4 Vi- + Vi- + Vj- + Vk- 

The large densities of negative helicity neutrinos means that neutrinos will 
also scatter off of other neutrinos. This scattering is mediated by the neutral 
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current weak interaction however (see Section 2, Eq. (20)) the mass eigen- 
state can change because the scattering is in a background of matter. The 
matrix element squared for vr- + ur- -t y- + vr- is given by: 

p2.s~l,l Is = G:32($. q(n’. Z) x (32) 
~sWMp) - -f4mi WLJ~) - k(k)1 + 4%&) - b(k)1 4%(r) - .qp)ly 

where {and k ( @and F) are the initial (final) neutrino four-momentum. 
In vacuum, 8, = B and this process vanishes as expected since then the 

neutral current is diagonal. The matrix element is a function of differences of 
mixing angles because of the symmetries of the neutral current. The neutral 
current is covariant under a constant rotation by angle < and hence the matrix 
element is invariant under b’, -+ 0, + <. 

The matrix element squared for y- + ~a- -+ vs- + VI- with the final vs- 
having four-momentum p can be obtained from Eq. (33) by replacing the 
first two sin’s factors with cos’s in the two terms in the brackets. The matrix 
element squared for y- + ~a- --t vs- + vr- can be obtained from Eq. (33) 
by replacing all sin’s with cos’s. 

3.2.5 Vi- + N + Vj- + N . 

Neutrino-nucleus scattering is the principle reaction responsible for trapping 
neutrinos in the hot neutron star. This scattering is purely via the neutral 
current weak interaction. Because the nucleus is much more massive than the 
temperature, the scattering conserves neutrino energy. Thus this reaction will 
also typically conserve a neutrino’s species, even in a background of matter. 

However there may be certain exceptions to this general behaviour. For 
example, neutrino-nucleus neutral current scattering which leaves the nu- 
cleus in an excited state will be nonconservative and hence can change neu- 
trino species (see Section 2, Eq. (20)). Also, in the densest part of the 
core, collective effects can reduce the effective mass of a nucleon such that 
neutrino-nucleon scattering may be nonconservative. Thus this reaction may 
be relevant for transferring lepton number between neutrino species. 
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3.3 Energy loss by “right handed” neutrino emis- 
sion. 

Negative helicity neutrinos are trapped in the hot neutron star. However 
positive helicity neutrinos can be produced during scattering and, since they 
are mostly sterile, freely leave the high density core. The cross section is 
proportional to mass squared so a too massive Dirac neutrino would cause the 
core to lose energy faster than observed by neutrino detectors here on Earth 
[24]. The bound on the Dirac neutrino mass, Eq. (l), follows approximately 
from a bound on the rate of energy loss [l, 21. 

3.3.1 vi- + N --t V+ + N . 

This reaction is usually taken to be the dominant process for emitting positive 
helicity neutrinos. Assuming two mixed, neutrino species, the rate of energy 
loss is given by: 

de 
z= J d3k d3p kk’ bp’ 

(2a)%O (2x)32po (2n)32]e’0 (2n)32p,0 I”1’(2T)‘6’()Ffd1 - f&)km 

with 
(33) 

F s (cos1[B,(k)-~]fs+sins[B,(k)-B]f~+cosa[~~(k)-B]~s+sins[B,(k)-e]fi) 

and 
(34) 

IMI’ = 8mzG&V;(C; + 3Cj) (35) 

where k and k’ (p and p’) are the initial and final neutrino (nucleon) momen- 
tum, respectively, ]M]s is the scattering matrix element [2, 9, 161 and F is 
the initial neutrino phase space density factor including the relevant mixing 
matrix element. f. denotes the phase space density for particle a and the f’s 
denote antineutrino phase space densities. The neutrino and nucleon masses 
are nz and MN, respectively, and Cv and CA are the appropriate weak inter- 
action vertex factors. The angular dependence has been dropped from the 
scattering matrix element. 

The mixing matrix elements are taken from in Eq. (13) however a 
heuristic justification of them is possible. The positive helicity states couple 
through the Dirac mass to the linear combination of the negative helicity 
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states which form the vacuum mass eigenstates. The unitarity matrix which 
connects the the negative helicity vacuum mass eigenstates to the negative 
helicity mass eigenstates in matter can be written as 

W;(k) = 
cos[6&(k) -e] sin[&,,(k) - 81 

- sin[&,,(k) - e] co@,(k) - e] . (36) 

First the vacuum mixing matrix rotates from the vacuum mass basis to the 
flavor basis and then we rotate from the flavor basis to the mass eigenstate 
in matter basis. This agrees with the results of Eq. (13). From this heuris- 
tic argument, it is easy to use Eq. (22) to generalize to the appropriate 
transformation matrix for three flavors 

As explained previously in Section 3.2, the f’s for neutrino mass eigen- 
states in matter are only described by Fermi-Dirac distributions when all 
three of the neutrinos are in full (“chemical”) equilibrium, or in special lim- 
iting situations. In order to evaluate Eq. (34) here, we shall make some 
assumptions about whether or not the neutrinos are in equilibrium. 

First let us assume that all possible leptons are in full equilibrium and 
equally share the cores lepton number with the electron, f. x fr = fs,fr = 
fs = 0. In this case all dependence on neutrino mixing cancels, by unitarity, 
and Eq. (34) simply reduces to just F = f.. Then the large chemical 
potential for neutrino’s in equilibrium with the electron enhances [9] the rate 
of energy loss by a factor of 4.4 x 10*(p/200MeV)4(20MeV/T)’ over the p=O 
case used to derive Eq. (1). The bound on the Dirac neutrino mass in Eq. 
(1) is improved to 

m > 1keV. (37) 

This is plotted in Fig. (1) and is the lower solid contour there. It is apparent 
that this sometimes lies below the region where the neutrino comes into 
full equilibrium. Thus the excluded region for the Dirac mass follows the 
conditions for equilibrium, as shown in Fig. (1). 

Let us now assume that only the “electron-neutrino” is degenerate. The 
appropriate limit is A. >> ma since A. in Eq. (2) is larger than ma in Eq. (1). 
Then the electron-neutrino and the electron-antineutrino are dominantly the 
2nd and 1st mass eigenstates in matter, respectively. Thus the phase space 
densities are f. = fs, fr = 0, and fr = fs = a Fermi-Dirac distribution with 
vanishing chemical potential. Enhanced neutrino emission will also occur 
for this case because the neutrino mass eigenstates in matter are different 

21 



from the mass eigenstates in vacuum. Using that tJ,,, = 7r/2 and &, = 0 for 
A. >> ma, Eq. (34) becomes 

F = (OX? 0 2fl + sin’ 0 fz) (38) 

The first and second phase space densities lead to the bounds in Eqs. (1) and 
(37), respectively. Thus the bound on the Dirac mass for out of equilibrium 
neutrinos is 

mz[~~~a 0 + 4.4 x 10’ sina B] < (28keV)’ (39) 

This constraint interpolates between Eq. (1) and Eq. (37). It is plotted in 
Fig. (l), and is the upper solid line there. 

3.3.2 e + p + v+ + n . 

This reaction is very similar to neutrino nucleus neutral current scattering as 
discussed in the previous section. Eq. (33) is also applicable here with some 
small modifications. The matrix element, [Mls, is a factor of two smaller 
than as given in Eq. (35) since the electron is unpolarized. The factor F is 
now 

F G f. sin’ B (40) 

where f. is the electron phase space density. The mixing matrix element 
follows from Eq. (13), it describes the rotation from the interaction basis to 
the vacuum mass eigenstate basis for negative helicity neutrinos. Hence this 
mixing is independent of the matter background. 

The rate does not depend on neutrino phase space factors, so it can be 
evaluated analytically. Neglecting the nucleon blocking in the final state, 

de 
z= 

G:(Ci? ’ 3c:)m’dp’Np sina e 
32n3 e (41) 

where NP is the proton number density. The rate of energy loss by this pro- 
cess, Eq. (41), vanishes for zero neutrino mixing (0 = 0) but when neutrinos 
do mix then it may dominate over Eq. (33) since the electron density is 
larger than the negative helicity neutrino density in numerical calculations. 
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3.3.3 H- + p -+ n + VP . 

If the core contains a large pion density, than this is the dominant process 
for producing “wrong helicity” neutrinos 191. However the equation of state 
of high density nuclear matter is not well known so the density of pions is 
uncertain. In addition, “line broadening” of the virtual nuclear state will 
suppress this process somewhat [25] and must be included in calculations. 

In the two flavor approximation, there are four possible final states: vs- + 
ii-,ll- + D-,v+ + Y&$,Y+ + 0’1+. Defining k to be the magnitude of the 
momentum of the V-‘s or i?+‘s, then the expression for the rate of energy loss 
by this reaction has a factor of 

(1 - F) _= ( d[e,(k) - e](l - fs) + sins[B,(k) - el(l - fi) (42) 

+ cos’[S,(k) - 8](1 - fs) + sin’[&,,(k) - S](l - fr)) 

This expression is very similar to that of Eq. (34) except that here the phase 
space densities are changed to blocking factors for the final state, trapped 
neutrino. 

If the phase space distributions of all the trapped neutrinos are identical, 
fi = f2,fl = f’s, then all mixing dependence vanishes, by unitarity. In 
particular, if the neutrinos are nondegenerate so that the blocking factors 
approach unity, then (I-F) = 2 as expected since there are only two possible 
final states in vacuum. Assuming that A. >> ms is a good approximation 
for all k, then 

(1-F) = (sinze(1-fs)+cos~e(1-f~)+cosZ8(1-~s)+sin28(1-~~)) (43) 

Note the different mixing behaviour between the neutrino and antineutrino 
states. 

The discussion given here also applies to the reaction N+N + N+N+vG. 

4 Summary. 

In this paper, we have examined particle physics issues relevant to describing 
massive, mixed, Dirac neutrinos in the core of a supernova. 

In dense matter, neutrinos comprise a sizeable fraction of the total number 
density. Then neutrinos forward scatter off of other neutrinos and this may 
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contribute to neutrino mixing effects. New, important contributions to this 
scattering have been described in the appendix. This nonlinear effect may 
be important, but has not been included in the present analysis. 

In the first section, the full Dirac neutrino field in a constant matter 
background is derived. The interaction with the matter background is he- 
licity dependent so the vacuum pairing between positive and negative he- 
licity states is broken. However the field for relativistic Dirac neutrinos in 
a background of matter has a relatively simple form when expressed in the 
interaction basis. Then the negative helicity mass eigenstates exhibit the 
matter dependent mixing of the MSW effect while the positive helicity neu- 
trino mixing is unaffected by a matter background. The expression for the 
neutrino field is necessary for calculations of neutrino decay or scattering in 
a matter background. 

For the scattering of relativistic neutrinos, the matter background has 
little effect on the kinematics-but the effect on the flavor content of the 
neutrino states is profound. The matter background insures that the mass 
eigenstates in matter always become incoherent between nonforward scatter- 
ings and hence are the physical basis for describing neutrinos in a supernova 
core. However since the weak interaction content of a negative helicity neu- 
trino mass eigenstate in matter varies strongly with energy (and density), 
this complicates discussions of how neutrinos scatter. For one thing, the 
neutral current is not diagonal in the mass eigenstate in matter basis if the 
initial and final neutrinos have different energies. In addition, the phase 
space distributions of the negative helicity neutrinos are typically far from 
Fermi-Dirac and so energy and density dependence must be accounted for ex- 
plicitly when describing how neutrinos approach an equilibrium distribution 
of lepton number. 

Mixing of all three neutrino species must be taken into account when in 
the core of a supernova. All leptons-the electron, the muon and the three 
neutrinos-quickly come into equilibrium and share the core’s lepton number, 
unless all vacuum neutrino masses are small. Typically, the bottleneck in 
the chain of reactions which distribute the lepton number is the step which 
brings the first “non-electron-neutrino” into full equilibrium. An estimate 
of when neutronieation does this, valid for Majorana or Dirac neutrinos, is 
plotted as the dashed line in Fig. (1). 

A supernova core can easily lose energy by emission of sterile, positive 
helicity Dirac neutrinos. An estimate of the mass and mixing angle range 
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excluded by SN1987A neutrino observations is shown as the shaded region 
in Fig. (1). This region is particularly interesting because a 17 keV neu- 
trino with 1% mixing with the electron-neutrino lies well inside the region 
excluded for Dirac neutrinos. Thus if the recent beta decay results are indeed 
indications of a neutrino mass, that mass is probably not Dirac. 

This conclusion may be weakened by effects not included in existing cal- 
culations. Sharing the lepton number between all the 5 possible leptons 
increases entropy and tends to strengthen the emission of all neutrino types. 
Also, the backreaction of lepton number loss on the core must be included. 
In addition, neutrino diffusion and/or convection should be accounted for, 
given the strong density dependence of neutrino mixing. Thus detailed mod- 
eling of neutrino emission from a supernova core is necessary to establish 
the precise bounds. The emphasis here has been on developing the frame- 
work for describing mixed neutrinos in dense matter in order to enable such 
calculations. 
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A Neutrino-Neutrino Forward Scattering. 

In the dense media of a supernova core, and in the early universe, neutrinos 
comprise a siseable fraction of the total number density. Under such con- 
ditions there will be a contribution to the induced mass of a neutrino from 
its forward scattering off of other neutrinos. Physically, the flavor evolution 
must be solved when it is necessary to describe how these neutrinos approach 
or depart from equilibrium. This evolution has been discussed many times in 
the literature, (See e.g. [26] and references therein), unfortunately the start- 
ing point [27, 281 used for these discussions is incomplete. Here we point 
out some extra terms, valid for Majorana or Dirac neutrinos, which earlier 
analyses omitted. 

The equation describing the flavor evolution of one neutrino of energy E 
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can be written as (see e.g. [6], eq. (2.29)) 

Here Mz is the effective mass squared and it is assumed that there are only 
two neutrino generations. The mass squared consists of a vacuum term plus 
background induced terms. In the standard model, a background of neu- 
trinos induces a contribution to M’ from the neutrino-neutrino interaction 
mediated by Z” exchange. For neutrino energies much less than the mass of 
the Zo, the effective interaction is: 

where the sum is over all neutrino species, the subscript L denotes the left- 
handed chirality and the U(2) flavor symmetry is manifest. However before 
one can write down these induced mass terms, information on the relative 
coherence of the neutrinos is necessary. 

To begin, let us assume we have a system of massless neutrinos described 
by infinite plane waves. Then the effective mass squared term for one of 
these equations describing a neutrino of energy E is, in the “charged lepton” 
basis, 

M” = 2&&E~ 21v!~j;tjvj12 
(46) 

j c P 

The sum is over all neutrinos other than that one whose propagation equation 
we are considering and V: is the a flavor component of the jth neutrino wave 
function. It has been assumed that the angular dependent terms cancel out 
in the sum. Refs. [27, 281 correctly calculated the diagonal terms in the 
induced mass, including the additional factor of 2 for identical final states 
particles, however the off diagonal terms were mistakenly omitted therein. 

The off-diagonal terms are crucial for preserving the symmetries of the 
Lagrangian. Using the unitarity relation ]~.]a + ]~,,]s = l/V, equation (46) 
can be rewritten as 

Ma = ~&GFE{~V,+C vi [v,* $I> j[ 1 “i 
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where NV is the neutrino number density. In this formulation, it is apparent 
that basis rotations of the “propagating” neutrino cancel with those of the 
“background” neutrinos. Thus the U(2) fl aver symmetry is maintained. To 
neglect the off diagonal terms in every basis is obviously incorrect since it 
breaks this symmetry and then the result of the fravor evolution of a given 
state would be dierent in each basis. The U(2) symmetry maintains the net 
flavor content. 

Off diagonal induced mass terms can be interpreted as an exchange of 
flavor between the “background” neutrino and the “propagating” neutrino, 
Fig. (3). Total flavor is conserved, but the flavor associated with a given 
single neutrino is not conserved. The fact that there are off diagonal induced 
mass terms is nothing new, the induced mass for forward scattering off of a 
charged lepton has off diagonal terms when expressed in any basis other than 
that which diagonalizes the charged current interaction. What is unusual is 
that because the flavor is exchanged between neutrinos with different mo- 
menta, a one particle propagation formalism may no longer be appropriate 
for describing the situation. 

To illustrate the effects of the off diagonal terms in the flavor basis, let 
us consider the simple example of a box containing massive, relativistic, 
nondegenerate, negative helicity neutrinos and no charged leptons. We make 
no assumptions at all as to coherence between the neutrinos. There are 
constraints on the dynamics of such a system since the total effective neutrino 
Lagrangian is invariant under separate, global U(1) rotations of each vacuum 
mass eigenstate (at tree level). Th us it is clear that there are conserved 
quantities, L;, one for each neutrino species, where 

vi denotes the neutrino wavefunction for the ith vacuum mass eigenstate and 
the sum is over all neutrinos in the box. Z; is the amount of z)ccuum mass 

eigenstate i in the box. However, the amount of electron-neutrino number in 
the box is in general time dependent 

but it can be expressed in terms of the conserved quantities. Assuming only 
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two flavors and using eq. (12) for the mixing matrix, 

L.(t) = Cos’8L1 + sin’BL2 + sin28ficos[#(t)] (50) 

where L, and 4 are the only time-dependent quantities. Equation (50) shows 
that the maximum change in L. is restricted by the vacuum mixing angle 
B and by the relative amounts of vacuum mass eigenstate. A change in the 
volume of the box as a function of time could not substantially change L. if 
either of these latter quantities are small. This is very different than the more 
familiar case of a neutrino in a charged lepton background where a density 
change causes a resonant transition, the MSW effect. In fact, Eq. (50) also 
applies when GJP --t 0 and the flavor oscillations are purely due to vacuum 
masses. Here, neutrino-neutrino forward scattering may affect the phase 
between the mass eigenstates but not the flavor mixing. In this example, 
neutrino-neutrino forward scattering does not contribute to an MSW type 
resonance! 

The microphysical description of the case of large vacuum neutrino masses 
is straightforward. Energy and momentum conservation can prevent rela- 
tivistic neutrinos from exchanging their mass identity in forward scattering. 
We estimate that this is the case if the two neutrino energy change, 

Et - Ei e ;(m; - m:)(; - +-) 

is large compared to the potential from neutrino-neutrino scattering, O(GFN,). 
Here E and E’ are the energies of the two scattering neutrinos. When the 
above condition is satisfied we expect that the off diagonal terms should av- 
erage out in the vacuum mass eigenskztes basis and then the effective mass 
squared for the neutrino is 

M’s = 1 -A Cl 

I I 2 0 A 
+~&‘GFE[NI+N~+ : ; 

I I 2 I (52) 

where A = rn: - rn: and N; are the number densities of the ith vacuum mass 
eigenstate for the neutrino. Now the multineutrino system can be described 
in terms of one particle equations. The propagation equation manifests the 
U(l)xU(l) flavor symmetry which is as expected from the massive neutrino 
Lagrangian. Explicitly, since there are no off-diagonal terms anywhere in this 
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matrix, it is clear that there is no contribution to the relative mixing of the 
neutrinos-only the relative phase of the oscillations is affected by neutrino- 
neutrino forward scattering. This is consistent with Eq. (50). An MSW type 
resonance does not occur. 

Now let us consider the situation of massless neutrinos in a background 
of charged fermions. The Lagrangian has a U(l)xU(l) flavor symmetry and 
no flavor mixing. At the microphysical level, energy and momentum conser- 
vation are always satisfied because Ef - Ei = 0 since the constant potentials 
from the charged lepton background just cancel out. Thus Eqs. (46) and 
(47) are still valid. 

When there is a charged fermion background and also the vacuum neu- 
trino masses are relevant, then the Lagrangian no longer has any global 
flavor symmetries. Neutrino mixing can and does depend on the charged 
lepton background, of course. This complicates the discussion of neutrino- 
neutrino forward scattering. At the microphysical level, the different energy 
dependences of the vacuum mass term and the charged lepton induced mass 
term means that there is not a common mass eigenstate basis where en- 
ergy and momentum conservation imply that the off diagonal terms from 
neutrino-neutrino forward scattering can be neglected. It is clear that the 
off-diagonal neutrino-neutrino terms will play an important role, but a full, 
general analysis of this case is beyond the scope of this article. 
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Figure Caption 

1. Plot of vacuum mass versus vacuum “e-tau” mixing for a Dirac 
neutrino in a supernova core. The dashed contour is an estimate 
of when all leptons share the core’s lepton number. The solid lines 
indicate bounds on the mass from neutrino energy loss for vari- 
ous assumptions about equilibrium. The cross denotes a 17 keV 
neutrino with 1% mixing. The shaded region is estimated to be 
excluded. 

2. Diagram describing how lepton number is transferred from elec- 
trons to the other leptons from charged current interactions with 
nucleon*. The neutrino number assignment assumes that A, >> 
ms. The dashed rate is a possible reaction that is extra suppressed. 

3. Feynmann diagrams associated with neutrino-neutrino forward 
scattering, (a) diagonal and (b) off-diagonal terms. 
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